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Motivation

Machine learning has been widely used in different
areas

I image recognition, self-driving vehicles, etc.
I Existing frameworks

I TensorFlow, Caffe, TinyDNN, Theano, etc.

I Challenges
I Lack of OpenCL support

I Do not support multiple architectures
(exception Caffe)

I Do not support performance portability

I Embedded systems issues
I Huge computational and communication

demands
I The stringent size, power and memory

resource constraints
I High efficiency and accuracy
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TensorFlow

I Front-end: graph-based
model

I Tensor (input/output data)
I Operations (unit of

computation)

I Back-ends
I Eigen (main): C++

template-based linear
algebra library

I Front-end: expression
tree-based model

I Backend: CUDA, CPU

I CuDNN : NVIDIA neural
network library

I Embedded built-in
operations
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The Aim

Adding an OpenCL 1.2 backend to the existing TensorFlow
framework.

I The added backend must be a non-intrusive approach
I Should not change the front-end interface
I Should be able to use the existing backend code as much as

possible
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Proposed Approach

I Adding SYCL backend for
Eigen framework main
backend of TensorFlow)

I Registering kernel
implementation in TensorFlow
for SYCL backend

I Registering OpenCL-enabled
Devices as TensorFlow-
supporting Devices
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SYCL Programming Model

I A royalty-free, open standard from the Khronos Group

I ComputeCpp implementation used here

I Cross-platform performance portability

I Completely standard C++

I Single-source programming style
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SYCL Simple Example
#include <array>

#include <CL/sycl.hpp>

using namespace cl::sycl;

template <typename T> class SimpleVadd;

template<typename T, unsigned long ORDER>

void simple_vadd(std::array<T, ORDER> &VA, std::array<T, ORDER> &VB,

std::array<T, ORDER> &VC) {

// Queue creation

queue q;

// buffer creation

buffer<T, 1> bA{VA.data(), range<1>{ORDER}};

buffer<T, 1> bB{VB.data(), range<1>{ORDER}};

buffer<T, 1> bC{VC.data(), range<1>{ORDER}};

// queue submit scope

q.submit([&](handler &cgh) {

// convert host buffers to device accessors

auto pA = bA.template get_access<access::mode::read>(cgh);

auto pB = bB.template get_access<access::mode::read>(cgh);

auto pC = bC.template get_access<access::mode::write>(cgh);

// kernel scope

cgh.parallel_for<class SimpleVadd<T> >(

range<1>(ORDER), [=](id<1> it) {

pC[it] = pA[it] + pB[it];

});

});

}

int main() {

std::array<int,4> A = {1,2,3,4}, B = {1,2,3,4}, C;

simple_vadd(A, B, C);

return 0;

}
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Why SYCL

Eigen’s kernels follow a heavily C++-template-based expression
tree model

I SYCL has the ability to dispatch device kernels from C++
applications, similar to CUDA, etc.

I OpenCL 1.2 does not support C++
I OpenCL 2.1 does support C++ templates inside the kernel

I The kernel itself cannot be templated, therefore we still need
different kernel registration per type

I Expression tree-based kernel fusion is challenging without
embedding a custom compiler

SYCL enables C++ code to run on OpenCL 1.2 which is widely
supported on low-power platforms.
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Why SYCL-(Continued)

Eigen uses the single-source programming model for both CUDA
and CPU.

I SYCL supports single-source programming style
I No need to implement separate kernel code for each operation
I Use the same existing template code for both host and device
I OpenCL needs to re-implement the backend and maintaining it

would be hard
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Challenges

I Eigen data storage
I Standard pointer type for both CUDA and CPU
I CUDA supports standard pointer

I C-style pointer with no annotation will be created on the host
side

I The same pointer will be used on the device kernel

I C-style allocation/deallocation of memory
I OpenCL1.2 does not support standard pointer type to be

created on the host as a device memory and to be used on the
device kernel
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Proposed Solution

I Introducing a pointer mapper structure to mimic standard
pointer construction

I Using the template-based pointer class for leaf node in order
to parametrize the expression type construction

I Constructing the host expression using the pointer mapper
structure

I Preserving the Eigen expression interface

I Reconstructing the Eigen expression at compile time for the
device kernel

I Converting the pointer mapper structure of the leaf node to
the actual device pointer at compile-time
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Pointer Mapper

I Front-end: return a virtual pointer when memory allocation is
called

I Provide the same expression construction interface as CUDA
and CPU

I Backend: a map structure
I Create a one-to-one correspondence between the virtual

pointer and the actual SYCL buffer on the device scope.
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Pointer Mapper

I On memory allocation:
I < KEY ,VAL >
I KEY : virtual pointer
I VAL : SYCL buffer
I Return the virtual pointer

I On memory manipulation
I Retrieve the buffer from the pointer
I Apply the operation on the buffer
I Arithmetic operations have been deduced from the virtual

pointers and added to the buffers.

I On Memory deallocation:
I Retrieve the buffer from the pointer
I Delete the buffer
I Remove the fragmentation in virtual pointer space
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Expression Re-construction

Compile-time reconstruction of the actual expression from virtual
pointer expression happens in 3 scopes.

I Host Scope

I Queue Submit Scop

I Kernel Scope

I Example: A tree style representation of an
expression. A = B ∗ C + D

=

A +

∗

B C

D

codeplay.com 14



Expression Re-construction-Host Scope

I Number the terminals of the expression, in depth-first order.

I Generate a placeholder expression type by replacing terminal
types with a compile-time index type.

I Traverse the Expression tree in order to store all the stateful
objects (e.g functors, dimensions)
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Expression Re-construction-Queue Submit Scope

Compile-time reconstruction of the actual expression from virtual
pointer expression happens in 3 scopes.

I Convert the leaf node buffers to accessors and store them on
a tuple by traversing the Eigen expression.

=

A +

∗

B C

D

I � Accessor(A − buffer),
Accessor(B − buffer),
Accessor(C − buffer),
Accessor(D − buffer) �
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Expression Re-construction-Kernel Scope

I Convert the host pointers on the expression tree to the device
pointers.

I Instantiate the device expression tree and run it on the device

=

+

∗

3

0 3

2

1 2

3

0 3

2

1 2

3

I �
Accessor(A −
buffer),
Accessor(B −
buffer),
Accessor(C −
buffer),
Accessor(D −
buffer) �

=

A +

∗

B C

D

codeplay.com 17



Performance Evaluation

Following is the execution of TensorFlow operators benchmarks
using Eigen backend on Intel i7-6700K CPU backend @ 4.00GHz
for CPU and AMD Radeon R9 FURY for SYCL backend. The
result shows that for large scale tensor we will achieve up to one
order of magnitudes speedup over 4 threads CPU when running on
SYCL backend.
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Conclusion & Future work

I Enabling OpenCL backend for TensorFlow
https://github.com/lukeiwanski/tensorflow

I Enabling Eigen Tensor backend
https://bitbucket.org/mehdi_goli/opencl/

I Achieving up to 5 times speedup over multi-threaded CPU
code.

I Future work
I Vectorising kernel Operations

I Enabling Eigen-level vectorisation

I Improving reduction operation
I Completing the registration of all TensorFlow operations
I SYCLBLAS

https://github.com/codeplaysoftware/sycl-blas
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